
International Journal of Theoretical Physics, Vol. 44, No. 7, July 2005 (C© 2005)
DOI: 10.1007/s10773-005-7074-7

Qubit Semantics and Quantum Trees

Maria Luisa Dalla Chiara,1,4 Roberto Giuntini,2

Alberto Leporati,3 and Roberto Leporini3

Received August 14, 2004; accepted October 4, 2004

In the qubit semantics the meaning of any sentence α is represented by a quregister:
a unit vector of the n–fold tensor product ⊗n

C
2, where n depends on the number of

occurrences of atomic sentences in α (see Cattaneo et al.). The logic characterized by
this semantics, called quantum computational logic (QCL), is unsharp, because the
noncontradiction principle is violated. We show that QCL does not admit any logical
truth. In this framework, any sentence α gives rise to a quantum tree, consisting of a
sequence of unitary operators. The quantum tree of α can be regarded as a quantum cir-
cuit that transforms the quregister associated to the occurrences of atomic subformulas
of α into the quregister associated to α.

KEY WORDS: quantum computation; quantum logic.

1. INTRODUCTION

The theory of logical gates in quantum computation has suggested the seman-
tic characterization of a nonstandard form of quantum logic, that has been called
quantum computational logic. We will first recall some basic notions of quantum
computation. Consider the two-dimensional Hilbert space C

2 (where any vector
|ψ〉 is represented by a pair of complex numbers). Let B(1) = {|0〉 , |1〉} be the
canonical orthonormal basis for C

2, where |0〉 = (1, 0) and |1〉 = (0, 1).

Definition 1.1. Qubit. A qubit is a unit vector |ψ〉 of the Hilbert space C
2.

Recalling the Born rule, any qubit |ψ〉 = c0 |0〉 + c1 |1〉 (with |c0|2 + |c1|2 =
1). can be regarded as an uncertain piece of information, where the answer
NO has probability |c0|2, while the answer YES has probability |c1|2. The two
basis-elements |0〉 and |1〉 are usually taken as encoding the classical bit-values 0

1 Dipartimento di Filosofia, Università di Firenze, Firenze, Italy.
2 Dipartimento di Scienze Pedagogiche e Filosofiche, Università di Cagliari, Cagliari, Italy.
3 Dipartimento di Informatica, Sistemistica e Comunicazione (DISCo), Università degli Studi di

Milano – Bicocca, Milano, Italy.
4 To whom correspondence should be addressed at Dipartimento di Filosofia, Università di Firenze,

Via Bolognese 52, 50139 Firenze, Italy; e-mail: dallachiara@unifi.it.

971
0020-7748/05/0700-0971/0 C© 2005 Springer Science+Business Media, Inc.

972 Dalla Chiara, Giuntini, Leporati, and Leporini

and 1, respectively. From a semantic point of view, they can be also regarded as
the classical truth-values Falsity and Truth.

An n-qubit system (also called n-quregister or quantum register of size n) is
represented by a unit vector in the n-fold tensor product Hilbert space ⊗n

C
2 :=

C
2 ⊗ . . . ⊗ C

2︸ ︷︷ ︸
n−t imes

. We will use x, y, . . . as variables ranging over the set {0, 1}. At the

same time, |x〉 , |y〉 , . . . will range over the basis B(1). Any factorized unit vector
|x1〉 ⊗ · · · ⊗ |xn〉 of the space ⊗n

C
2 will be called an n-configuration (which can

be regarded as a quantum realization of a classical bit sequence of length n). Instead
of |x1〉⊗ · · · ⊗ |xn〉 we will simply write |x1, . . . , xn〉. Recall that the dimension of
⊗n

C
2 is 2n, while the set of all n-configurations B(n) = {|x1, . . . , xn〉 : xi ∈ {0, 1}}

is an orthonormal basis for the space ⊗n
C

2. We will call this set a computa-
tional basis for the n-quregisters. Since any string x1, . . . , xn represents a nat-
ural number j ∈ [0, 2n − 1] (where j = 2n−1x1 + 2n−2x2 + · · · + xn), any unit
vector of ⊗n

C
2 can be shortly expressed in the following form:

∑2n−1
j=0 cj ‖j 〉〉,

where cj ∈ C, ‖j 〉〉 is the n-configuration corresponding to the number j

and
∑2n−1

j=0 |cj |2 = 1.

2. QUANTUM LOGICAL GATES

An n-input/n-output quantum logical gate is a computation device that trans-
forms an n-quregister into an n-quregister. From the mathematical point of view, a
quantum logical gate can be described as a unitary operator that acts on the vectors
of the Hilbert space ⊗n

C
2. We will now introduce some examples of quantum

logical gates. Since they are described by unitary operators, it will be sufficient to
determine their behavior on the elements of the computational basis B(n).

Definition 2.1. (The NOT gate). For any n ≥ 1, the NOT gate is the linear op-
erator NOT(n) defined on ⊗n

C
2 such that for every element |x1, . . . , xn〉 of the

computational basis B(n):

NOT(n)(|x1, . . . , xn〉) = |x1, . . . , xn−1〉 ⊗ |1 − xn〉.
In other words, NOT(n) inverts the value of the last element of any basis-vector

of ⊗n
C

2.

Definition 2.2. (The Petri–Toffoli gate). For any n ≥ 1 and any m ≥ 1 the Petri–
Toffoli gate is the linear operator T (n,m,1) defined on ⊗n+m+1

C
2 such that for every

element |x1, . . . , xn〉 ⊗ |y1, . . . , ym〉 ⊗ |z〉 of the computational basis B(n+m+1):

T (n,m,1)(|x1, . . . , xn〉 ⊗ |y1, . . . , ym〉 ⊗ |z〉)
= |x1, . . . , xn〉 ⊗ |y1, . . . , ym〉 ⊗ |xnym ⊕ z〉,

Qubit Semantics and Quantum Trees 973

where ⊕ represents the sum modulo 2.
One can easily show that both NOT(n) and T (n,m,1) are unitary operators.
The gate T (n,m,1) is very similar to a gate introduced by Petri in Petri (1967).

For n = m = 1, we obtain the well known Toffoli gate (Toffoli, 1980), which is
essentially identical to Feynman’s Controlled-Controlled-NOT gate. Both classical
conjunction and classical negation are realized by this gate in a reversible way.

The quantum logical gates we have considered so far are, in a sense,
“semiclassical.” A quantum logical behavior only emerges in the case where
our gates are applied to superpositions. When restricted to classical registers, such
operators turn out to behave as classical truth-functions. We will now consider a
genuine quantum gate that transforms classical registers (elements of B(n)) into
quregisters that are superpositions.

Definition 2.3. (The square-root-of-NOT gate). For any n ≥ 1, the square-

root-of-NOT is the linear operator
√
NOT

(n)
defined on ⊗n

C
2 such that for every

element |x1, . . . , xn〉 of the computational basis B(n):

√
NOT

(n)
(|x1, . . . , xn〉) = |x1, . . . , xn−1〉 ⊗ 1

2
((1 + i)|xn〉

+(1 − i)|1 − xn〉).
One can easily show that

√
NOT

(n)
is a unitary operator. The basic property of√

NOT
(n)

is the following:

for any |ψ〉 ∈ ⊗n
C

2,
√
NOT

(n)
(
√
NOT

(n)
(|ψ〉)) = NOT(n)(|ψ〉).

In other words, applying twice the square root of the negation means negating.
Interestingly enough, the square-root-of-NOT gate has some physical models

and implementations. As an example, consider an idealized atom with a single
electron and two energy levels: a ground state (identified with |0〉) and an excited
state (identified with |1〉). By shining a pulse of light of appropriate intensity,
duration, and wavelength, it is possible to force the electron to change energy
level. As a consequence, the state (bit) |0〉 is transformed into the state (bit) |1〉,
and viceversa: |0〉 	→ |1〉; |1〉 	→ |0〉. We have thus obtained a typical physical
model for the gate NOT(1).

Now, by using a light pulse of half the duration as the one needed to perform
the NOT operation, we effect a half–flip between the two logical states. The state
of the atom after the half pulse is neither |0〉 nor |1〉, but rather a superposition of
both states: |0〉 	→ 1+i

2 |0〉 + 1−i
2 |1〉; |1〉 	→ 1−i

2 |0〉 + 1+i
2 |1〉.

As expected, the square-root-of NOT gate has no Boolean counterpart.

Lemma 2.1. There is no function f : {0, 1} → {0, 1} such that for any
x ∈ {0, 1} : f (f (x)) = 1 − x.

974 Dalla Chiara, Giuntini, Leporati, and Leporini

Proof: Suppose, by contradiction, that such a function f exists. Two cases are
possible: (i) f (0) = 0; (ii) f (0) = 1.

(i) By hypothesis, f (0) = 0. Thus, 1 = f (f (0)) = f (0) = 0, contradiction.
(ii) By hypothesis, f (0) = 1. Thus, 1 = f (f (0)) = f (1). Hence, f (0) = f (1).
Therefore, 1 = f (f (0)) = f (f (1)) = 0, contradiction. �

Interestingly enough,
√
NOT does not have even any fuzzy counterpart.

Lemma 2.2. There is no continuous function f : [0, 1] → [0, 1] such that for
any x ∈ [0, 1] : f (f (x)) = 1 − x.

Proof: Suppose, by contradiction, that such a function f exists. First, we
prove that f (1

2) = 1
2 . By hypothesis, f (f (1

2)) = 1 − 1
2 = 1

2 . Hence, f (f (f (1
2))) =

f (1
2). Thus, 1 − f (1

2) = f (1
2). Therefore, f (1

2) = 1
2 . Consider now f (0). One

can easily show: f (0) �= 0 and f (0) �= 1. Clearly, f (0) �= 1
2 since otherwise

we would obtain 1 = f (f (0)) = f (1
2) = 1

2 . Thus, only two cases are possible:
(i) 0 < f (0) < 1

2 ; (ii) 1
2 < f (0) < 1.

(i) By hypothesis, 0 < f (0) < 1
2 < 1 = f (f (0)). Consequently, by continuity,

∃x ∈ (0, f (0)) such that 1
2 = f (x). Accordingly, 1

2 = f (1
2) = f (f (x)) = 1 − x.

Hence, x = 1
2 , which contradicts x < f (0) < 1

2 .
(ii) By hypothesis, f (1

2) = 1
2 < f (0) < 1 = f (f (0)). By continuity, ∃x ∈

(1
2 , f (0)) such that f (x) = f (0). Thus, 1 − x = f (f (x)) = f (f (0)) = 1. Hence,

x = 0, which contradicts x > 1
2 . �

Consider now the set
⋃∞

n=1 ⊗n
C

2 (which contains all quregisters |ψ〉 “living”
in ⊗n

C
2, for a given n ≥ 1). The gates NOT,

√
NOT, and T can be uniformly defined

on this set in the expected way:

NOT(|ψ〉) := NOT(n)(|ψ〉), if |ψ〉 ∈ ⊗n
C

2

√
NOT(|ψ〉) := √

NOT
(n)

(|ψ〉), if |ψ〉 ∈ ⊗n
C

2

T (|ψ〉 ⊗ |ϕ〉 ⊗ |χ〉) := T (n,m,1)(|ψ〉 ⊗ |ϕ〉 ⊗ |χ〉),
if |ψ〉 ∈ ⊗n

C
2, |ϕ〉 ∈ ⊗m

C
2 and |χ〉 ∈ C

2

On this basis, a conjunction AND and a disjunction OR can be defined for any
pair of quregisters |ψ〉 and |ϕ〉:

AND(|ψ〉, |ϕ〉) := T (|ψ〉 ⊗ |ϕ〉 ⊗ |0〉).

OR(|ψ〉, |ϕ〉) := NOT(AND(NOT(|ψ〉), NOT(|ϕ〉))).

Qubit Semantics and Quantum Trees 975

Clearly, |0〉 represents an “ancilla” in the definition of AND. We will use AND
(OR) as a metalinguistic abbreviation for the corresponding definiens.

One can easily verify that, when applied to classical bits, NOT, AND, and OR
behave as the standard Boolean truth-functions.

We will now introduce the concept of probability-value of a quregis-
ter, which will play an important role in the quantum computational seman-
tics. For any integer n ≥ 1, let us first define a particular set of natural
numbers:

C
(n)
1 := {i : ‖i〉〉 = |x1, . . . , xn〉, and xn = 1}.

Apparently, C
(n)
1 contains precisely all the odd numbers in [0, 2n − 1].

Definition 2.4. (Probability-value). Let |ψ〉 = ∑2n−1
j=0 cj‖j 〉〉 be any quregister of

⊗n
C

2. The probability-value of |ψ〉 is the real value Prob(|ψ〉) := ∑
j∈C

(n)
1

|cj |2.

From an intuitive point of view, Prob(|ψ〉) represents the probability that the
quregister |ψ〉 (which is a superposition) collapses into an n-configuration whose
last element is 1.

Theorem 2.1. Let |ψ〉 and |ϕ〉 be two quregisters. The following properties hold:

(i) Prob(AND(|ψ〉, |ϕ〉)) = Prob(|ψ〉)Prob(|ϕ〉);
(ii) Prob(NOT(|ψ〉)) = 1 − Prob(|ψ〉);

(iii) Prob(OR(|ψ〉, |ϕ〉)) = Prob(|ψ〉) + Prob(|ϕ〉)
− Prob(|ψ〉)Prob(|ϕ〉);

(iv) Let |ψ〉 = ∑2n−1
j=0 aj‖j 〉〉. Then

Prob(
√
NOT(|ψ〉)) = ∑

j∈C
(n)
1

∣∣ 1−i
2 aj−1 + 1+i

2 aj

∣∣2
;

(v) Prob(
√
NOT(NOT(|ψ〉))) = Prob(NOT(

√
NOT(|ψ〉)));

(vi) Let |ψ〉 = ∑2n−1
j=0 aj‖j 〉〉|xj 〉. Then Prob(

√
NOT(|ψ〉)) = 1

2 ;

(vii) Prob(
√
NOT(AND(|ψ〉, |ϕ〉))) = 1

2 .

Proof:

(i)–(v) (Dalla chiara et al.);

(vi) Prob(
√
NOT(|ψ〉)) = Prob

(
√
NOT

(
2n−1∑
j=0

aj‖j 〉〉|xj 〉
))

= Prob

2n−1∑

j=0

aj‖j 〉〉 ⊗
(

1

2
(1 + i)|xj 〉 + 1

2
(1 − i)|1 − xj 〉

)

976 Dalla Chiara, Giuntini, Leporati, and Leporini

= Prob

2n−1∑

j=0

aj

1

2
(1 − i(−1)xj)‖j 〉〉|1〉

+
2n−1∑
j=0

aj

1

2
(1 + i(−1)xj)‖j 〉〉|0〉

=
2n−1∑
j=0

∣∣∣∣aj

1

2
(1 − i(−1)xj)

∣∣∣∣2

=
2n−1∑
j=0

|aj |2
∣∣∣∣1

2
(1 − i(−1)xj)

∣∣∣∣2

= 1

2

2n−1∑
j=0

|aj |2 = 1

2
;

(vii) AND (|ψ〉, |ϕ〉) has the form
∑2n+m−1

j=0 aj‖j 〉〉|xj 〉.
Thus, by (vi), Prob (

√
NOT(AND(|ψ〉, |ϕ〉))) = 1

2 . �

3. QUANTUM COMPUTATIONAL SEMANTICS

The starting point of the quantum computational semantics is quite different
from the standard quantum logical approach. The basic idea is that every sentence
α is semantically interpreted as a quregister. From an intuitive point of view, one
can say that the meaning of a sentence is identified with the information quantity
encoded by the sentence under consideration.

Consider a sentential language L with the following connectives: negation
(¬), square root of not (

√¬), conjunction (∧). Let FormL be the class of all
sentences of the language L. We will use the following metavariables: p, q, . . .

for atomic sentences and α, β, . . . for sentences.
The basic concept of our semantics is represented by the notion of quan-

tum computational model: an interpretation of the language L that associates a
quregister to any sentence α.

Definition 3.1.: (Quantum computational model). A quantum computational
model of L is a function Qub : FormL → ⋃∞

n=1 ⊗n
C

2 that associates to any
sentence α of the language a quregister:

Qub(α) :=

a qubit if α is an atomic sentence;

NOT(Qub(β)) if α = ¬β;√
NOT(Qub(β)) if α = √¬β;

AND(Qub(β),Qub(γ)) if α = β ∧ γ.

Qubit Semantics and Quantum Trees 977

We will call Qub(α) the information-value of α. Instead of Qub(α), we
will also write |α〉Qub (or simply |α〉). Our definition univocally determines,
for any Qub and any sentence α, the Hilbert space ⊗n

C
2 to which |α〉Qub be-

longs. Apparently, n is the number of all occurrences of atomic sentences and
of the connective ∧ in α. According to the intended physical interpretation, Qub

will associate to each occurrence of one and the same atomic subformula p

of α the state |p〉, that corresponds to an identical preparation of the quantum
system.

We can now define the notion of truth, logical truth, consequence, and logical
consequence.

Definition 3.2. (Truth and logical truth). A sentence α is true in a quantum
computational model Qub (abbreviated as |=Qub α) iff Prob(Qub(α)) = 1; α is
a logical truth (|= α) iff for any Qub, |=Qub α.

Definition 3.3. (Consequence in Qub and logical consequence). A sentence
β is a consequence in a quantum computational model Qub of a sentence α

(α |=Qub β) iff Prob(Qub(α)) ≤ Prob(Qub(β)); β is a logical consequence of α

(α |= β) iff for any Qub, α |=Qub β.

The logic characterized by this semantics has been termed quantum com-
putational logic (QCL, for short)(Cattaneo et al.). The following theorem shows
that this logic is completely different from the well known orthomodular quantum
logic (OQL), which is semantically characterized by the class of all orthomodular
lattices.

Theorem 3.1. QCL and OQL are not comparable.

Proof: (i) OQL is not a sublogic of QCL. This follows from the fact that the idem-
potence property (α |= α ∧ α) holds in OQL, whereas it is violated in QCL. Take
for example, |α〉 = 1√

2
(|0〉 + |1〉). Then, Prob(|α〉) = 1

2 > 1
4 = Prob(|α ∧ α〉).

(ii) QCL is not a sublogic of OQL. This follows from the fact that the strong
distributivity property (α ∧ (β ∨ γ) |= (α ∧ β) ∨ (α ∧ γ)) is violated in OQL
(Dalla Chiara and Giuntini (2002)), whereas it holds in QCL. In fact, by Theorem 1
(i)–iii)), we obtain

Prob(|α ∧ (β ∨ γ)〉) = Prob(AND(|α〉, OR(|β〉, |γ 〉)))
= Prob(|α〉)Prob(|β〉) + Prob(|α〉)Prob(|γ 〉) − Prob(|α〉)Prob(|β〉)

× Prob(|γ 〉) ≤ Prob(|α〉)Prob(|β〉) + Prob(|α〉)Prob(|γ 〉)
− Prob(|α〉)2Prob(|β〉)Prob(|γ 〉)

978 Dalla Chiara, Giuntini, Leporati, and Leporini

= Prob(OR(AND(|α〉, |β〉), AND(|α〉, |γ 〉)))
= Prob(|(α ∧ β)〉 ∨ (α ∧ γ)|)

�

The logic QCL turns out to be unsharp, because the noncontradiction princi-
ple can be violated: the negation of a contradiction (¬(α ∧ ¬α)) is not necessarily
true (Cattaneo et al.).

Theorem 3.2. Let Qub be any quantum computational model and let α be any
sentence. If Prob(Qub(α)) ∈ {0, 1}, then there is an atomic subformula p of α

such that Prob(Qub(p)) ∈ {0, 1
2 , 1}.

Proof: Suppose that Prob(Qub(α)) ∈ {0, 1}. The proof is by induction on the
logical complexity of α.

(i) α is an atomic sentence. The proof is trivial.
(ii) α = ¬β. By Theorem 2.1(ii), Prob(Qub(α)) = 1 − Prob(Qub(β)) ∈

{0, 1}. The conclusion follows by induction hypothesis.
(iii) α = √¬β. By hypothesis and by Theorem 2.1(vii), β cannot be a

conjunction. Consequently, only the following cases are possible: (iiia)
β = p; (iiib) β = ¬γ ; (iiic) β = √¬γ .

(iiia) β = p. By hypothesis, Prob(
√¬β) ∈ {0, 1}. Hence,√

NOT(Qub(p)) = c|x〉, where |x〉 ∈ {|0〉, |1〉} and |c| = 1. We
have: NOT(Qub(p)) = √

NOT(
√
NOT(Qub(p))) = √

NOT(c|x〉). By
Theorem 2.1(iv), Prob(

√
NOT(c|x〉)) = 1

2 . As a consequence, Prob
(Qub(¬p)) = 1

2 = Prob(Qub(p))
(iiib) β = ¬γ . By Theorem 2.1(v), Prob(Qub(

√¬¬γ)) =
Prob(Qub(¬√¬γ)) = 1 − Prob(Qub(

√¬γ)). The conclusion
follows by induction hypothesis.

(iiic) β = √¬γ . Then Prob(Qub(
√¬√¬γ)) = Prob(Qub(¬γ)) = 1 −

Prob(Qub(γ)). The conclusion follows by induction hypothesis.
(iv) α = β ∧ γ . By Theorem 2.1(i), Prob(Qub(β ∧ γ)) = Prob(Qub(β))

Prob(Qub(γ)) ∈ {0, 1}. The conclusion follows by induction hypoth-
esis.

�

A remarkable property of QCL is asserted by the following Corollary of
Theorem 3.2.

Corollary 3.1. There exists no quantum computational logical truth.

Qubit Semantics and Quantum Trees 979

Proof: Suppose, by contradiction, that α is a logical truth. Let p1, . . . , pn be the
atomic sentences occurring in α and let Qub be a quantum computational model
such that for any i (1 ≤ i ≤ n), Prob(Qub(pi)) /∈ {0, 1

2 , 1}. Then, by Theorem 3.2,
Prob(Qub(α)) /∈ {0, 1}, contradiction. �

4. QUANTUM TREES

For the sake of technical simplicity we slightly modify our language. The
new language contains a privileged atomic sentence f (representing the falsity)
and three primitive connectives: the negation ¬, the square root of the negation√¬, and a ternary conjunction

∧
. The connective

∧
represents a conjunction

whose form is “close” to the Petri–Toffoli gate. For any sentences α and β the
expression

∧
(α, β, f) is a sentence of the language. The usual conjunction α ∧ β

is dealt with as metalinguistic abbreviation for the ternary conjunction
∧

(α, β, f).
Semantically, we will require that for any Qub:

Qub(f) = |0〉; Qub(
∧

(α, β, f)) = T (Qub(α) ⊗ Qub(β) ⊗ Qub(f)).

Definition 4.1. (The Atomic Complexity of α). The atomic complexity of a sen-
tence α (Atcompl(α)) is the number of occurrences of atomic sentences in α.

For example, if α = p ∧ ¬p = ∧
(p,¬p, f), then Atcompl(α) = 3.

Lemma 4.1. Let Atcompl(α) = n. Then ∀Qub : Qub(α) ∈ ⊗n
C

2.

Hence, the space of all possible qubit-meanings of α is determined by the
atomic complexity of α.

We will first introduce the notion of syntactical tree of a sentence α (abbre-
viated as ST reeα). Consider all subformulas of α.

Any subformula may be:

• an atomic sentence p (possibly f);
• a negated sentence ¬β;
• a square-root-negated sentence

√¬β;
• a conjunction

∧
(β, γ, f).

The intuitive idea of syntactical tree can be illustrated as follows. Every
occurrence of a subformula of α gives rise to a node of ST reeα . The tree consists of
a finite number of levels and each level is represented by a sequence of subformulas

980 Dalla Chiara, Giuntini, Leporati, and Leporini

of α:

Levelk(α)
...

Level1(α).

The root-level (denoted by Level1(α)) consists of α. From each node of the tree
at most three edges may branch according to the following branching-rule:

The second level (Level2(α)) is the sequence of subformulas of α that is
obtained by applying the branching-rule to α. The third level (Level3(α)) is
obtained by applying the branching-rule to each element (node) of Level2(α),
and so on. Finally, one obtains a level represented by the sequence of all atomic
occurrences of α. This represents the last level of ST reeα . The height of Streeα

(denoted by Height(α)) is then defined as the number of levels of ST reeα .
A more formal definition of syntactical tree can be given by using some

standard graph-theoretical notions.

Example 4.1. The syntactical tree of α = ¬p ∧ (q ∧ √¬p) is the following:

Clearly the height of Streeα is 4.

For any choice of a quantum computational model Qub, the syntactical tree
of α determines a corresponding sequence of quregisters. Consider a sentence α

with n atomic occurrences (p1, . . . , pn). Then Qub(α) ∈ ⊗n
C

2. We can associate

Qubit Semantics and Quantum Trees 981

a quregister |ψi〉 to each Leveli(α) of Streeα in the following way. Suppose that:

Leveli(α) = (β1, . . . , βr).

Then:

|ψi〉 = Qub(β1) ⊗ . . . ⊗ Qub(βr)

Hence:

|ψ1〉 = Qub(α)
...

|ψHeight(α)〉 = Qub(p1) ⊗ . . . ⊗ Qub(pn)

where all |ψi〉 belong to the same space ⊗n
C

2.
From an intuitive point of view, |ψHeight(α)〉 can be regarded as a kind of

epistemic state, corresponding to the input of a computation, while |ψ1〉 represents
the output.

We obtain the following correspondence:

LevelHeight (α̂)(α) � |ψHeight (α)〉 : the input

. . . � . . .

Level1(α) � |ψ1〉 : the output

The notion of quantum tree of a sentence α (QT reeα) can be now defined
as a particular sequence of unitary operators that is uniquely determined by the
syntactical tree of α. As we already know, each Leveli(α) of ST reeα is a sequence
of subformulas of α. Let Level

j

i (α) represent the j -th element of Leveli(α). Each
node Level

j

i (α) (where 1 ≤ i < Height(α)) can be naturally associated to a unitary
operator Op

j

i , according to the following operator-rule:

Op
j

i :=

0(1) if Level
j

i (α) is an atomic sentence;

NOT(r) if Level
j

i (α) = ¬β and |β〉 ∈ ⊗r
C

2;
√
NOT

(r)
if Level

j

i (α) = √¬β and |β〉 ∈ ⊗r
C

2;
T (r,s,1) if Level

j

i (α) = ∧
(β, γ, f), |β〉 ∈ ⊗r

C
2

and |γ 〉 ∈ ⊗s
C

2,

where 1I(1) is the identity operator on C
2.

On this basis, one can associate an operator Ui to each Leveli(α) (such that
1 ≤ i < Height(α)):

Ui :=
|Leveli (α)|⊗

j=1

Op
j

i ,

982 Dalla Chiara, Giuntini, Leporati, and Leporini

where |Leveli(α)| is the length of the sequence Leveli(α).
Being the tensor product of unitary operators, every Ui turns out to be a

unitary operator. One can easily show that all Ui are defined in the same space
⊗n

C
2, where n is the atomic complexity of α.
The notion of quantum tree of a sentence can be now defined as follows.

Definition 4.2. (The quantum tree of α). The quantum tree of α (denoted by
QT reeα) is the operator-sequence (U1, . . . , UHeight(α)−1) that is uniquely deter-
mined by the syntactical tree of α.

As an example, consider the following sentence: α = p ∧ ¬p =∧
(p,¬p, f). The syntactical tree of α is the following:

Level1(α) =
∧

(p,¬p, f)

Level2(α) = (p,¬p, f)

Level3(α) = (p, p, f).

In order to construct the quantum tree of α, let us first determine the operators
Op

j

i corresponding to each node of Streeα . We will obtain:

• Op1
1 = T (1,1,1), because

∧
(p,¬p, f) is connected with (p,¬p, f) (at

Level2(α));
• Op1

2 = I
(1), because p is connected with p (at Level3(α));

• Op2
2 = NOT(1), because ¬p is connected with p (at Level3(α));

• Op3
2 = I

(1), because f is connected with f (at Level3(α)).

The quantum tree of α is represented by the operator-sequence (U1, U2),
where:

U1 = Op1
1 = T (1,1,1);

U2 = Op1
2 ⊗ Op2

2 ⊗ Op3
2 = I

(1) ⊗ NOT(1) ⊗ I
(1).

Apparently, QT reeα is independent of the choice of Qub.

Theorem 4.1. Let α be a sentence whose quantum tree is the operator-sequence
(U1, . . . , UHeight(α)−1). Given a quantum computational model Qub, consider the
quregister-sequence (|ψ1〉, . . . , |ψHeight(α)〉) that is determined by Qub and by
the syntactical tree of α. Then, Ui(|ψi+1〉) = |ψi〉 (for any i such that 1 ≤ i <

Height(α)).

Proof: Straightforward, �

Qubit Semantics and Quantum Trees 983

The quantum tree of α can be naturally regarded as a quantum circuit that
computes the output Qub(α), given the input Qub(p1), . . . ,Qub(pn) (where
p1, . . . , pn are the atomic occurrences of α). In this framework, each Ui is the
unitary operator that describes the computation performed by the ith layer of the
circuit.

ACKNOWLEDGMENTS

This work has been supported by MIUR\COFIN project “Formal Languages
and Automata: Theory and Applications.”

REFERENCES

Cattaneo, G., Dalla Chiara, M. L., Giuntini, R., and Leporini, R. An Unsharp Logic From Quantum
Computation, International Journal of Theoretical Physics 43, pp. 1803, 2004.

Dalla Chiara, M. L. and Giuntini, R. (2002). Quantum logics. In Handbook of Philosophical Logic, G.
Gabbay and F. Guenthner, eds., Vol. VI, Kluwer, Dordrecht, The Netherlands, pp. 129–228.

Dalla Chiara, M. L., Giuntini, R., and Leporini, R. Quantum Computational Structures Mathematical
Slovaca 54, pp. 87–108, 2004

Deutsch, D., Ekert, A., and Lupacchini, R. (2000). Machines, logic, and quantum physics. Bulletin of
Symbolic Logic 3, 265–283.

Petri, C. A. (1967). Grundsätzliches zur Beschreibung diskreter Prozesse. In Proceedings of the
3rd Colloquium über Automatentheorie (Hannover, 1965), Birkhäuser Verlag, Basel, Switzerland,
pp. 121–140.

Toffoli, T. (1980). Reversible computing. In Automata, Languages, and Programming, J. W.
de Bakker and J. van Leeuwen, eds., Springer, Berlin, pp. 632–644.

